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Abstract 

 This effort explored the mechanical characteristics and economic feasibility of 

using the fiber metal laminate, GLARE-3, as a secondary aircraft structure; specifically, 

the cargo floor of a C-130.  The mechanical properties were determined through static 

four-point bending and tensile testing and dynamic impact testing.  Aggregate behavior 

of the constituent materials was predicted using a model which consisted of Mass 

Volume Fraction (MVF) and Classical Laminated Plate Theory (CLPT) methods using 

known values for the constituents.   

Static testing was conducted on coupon-level specimens using standardized 

testing procedures.  Static tensile tests were conducted on specimens with four different 

fiber orientations, 0°, 22.5°, 45°, and 90°, while static bending tests were conducted on 

fiber orientations of 0° and 90°.  Two series of impact tests were performed on both 

GLARE-3 and 2024 T3 aluminum using 4-inch wide strips to show impact damage 

progression.  Data for the economic analysis was gathered from existing literature and 

cost data was analyzed over a 30 year period for both GLARE and aluminum.  Analysis 

of the data proved the use of GLARE-3 as a potential cargo floor material was both 

mechanically and economically feasible with the material paying for itself within the first 

year of its use. 
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MECHANICAL PROPERTIES CHARACTERIZATION AND BUSINESS CASE 
ANALYSIS OF THE FIBER METAL LAMINATE GLARE-3 FOR USE AS 

SECONDARY AIRCRAFT STRUCTURE 

 

 

Chapter I. Introduction 

 

 

Sustained high operations tempo due to ongoing combat operations in Iraq and 

Afghanistan have resulted in accelerating the aging process of U.S. Air Force aircraft. 

Many of these aircraft are already operating outside their respective intended service 

lives.  The demand placed on these aircraft’s structures combined with their respective 

age has resulted in increased structural inspections and repair activities, ultimately 

increasing the cost to maintain these aircraft.  Replacing existing structural components 

with structures made from fiber metal laminates could alleviate the current inspection and 

repair workload and extend the service life of these aircraft.  This research effort analyzes 

the material’s mechanical properties and presents a business case analysis to explore the 

feasibility of using this material onboard U.S. Air Force aircraft as a secondary aircraft 

structure, specifically the cargo flooring. 

General Background 

 One hundred years of aircraft evolution has resulted in the application of third 

generation materials to the primary structure of passenger aircraft (Vlot, 2001).  First 

generation materials are exemplified by wooden primary structures, from the 1903 

Wright Flyer built from spruce wood to de Haviland’s Albatross built with plywood-balsa 
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sandwich structures in 1938 (Paul & Pratt, 2004).  Aluminum aircraft structures prevalent 

in the propeller-driven production aircraft of the 1930s to the jet-powered passenger 

aircraft of the 1990s mark the second generation of aircraft materials. Advanced 

composite materials have been increasingly applied to military aircraft structures starting 

in the 1960s, and have succeeded in transferring composites and hybrids to a significant 

percentage of commercial aircraft structural components in the early 21st century.  

Although unable to witness the first flight of hybrid and composite primary structures on 

commercial passenger aircraft, Vlot’s (2001) realization of the potential uses and 

applications for these new materials of new aircraft production has been fulfilled in the 

Airbus 380 and the Boeing 787 Dreamliner.  

The third generation of aircraft materials, composite and hybrid materials, provide 

advantages to standard monolithic aluminum, much in the same manner aluminum had 

provided advantages over wooden aircraft structures.  Hybrid and composite structures 

have been tailored to achieve specific mechanical properties through the selection of fiber 

orientation and stacking sequence of materials.  Tailoring these materials increases 

structural efficiency, while reducing weight, thereby enabling the aircraft to perform the 

desired function and meet the design requirement.  The demanding structural properties 

required for the Grumman X-29, Bell/Boeing V-22 Osprey, and Scaled Composites 

Voyageur could not have been achieved through aluminum materials but were 

accomplished with composite structures (Forster, Clay, Holzwarth, Pratt, & Paul, 2008)  

Composite and hybrid materials have been used in advanced aircraft structural concepts 

specifically due to their increased stiffness and strength in comparison to aluminum 
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structures, which could not achieve the same aircraft performance due to increased 

weight. 

Hybrid materials can be tailored for structural performance such as stiffness, 

strength, and impact resistance.  “Once an application is selected and requirements have 

been defined, the application of individual constituents can be tailored for that particular 

structure appropriately.  This does not result in a new material concept, but in a new 

structural concept” (Alderliesten, 2009a, p. 1246).  In addition to structural performance 

advantages, composite and hybrid structures exhibit good durability and damage 

tolerance characteristics, possibly providing a useful alternative to second generation 

aluminum.  Fatigue can cause premature failure of aluminum structures.  A fatigued 

aluminum structure is damaged due to cracks that have developed from cyclic loading. 

These cracks increase local stress levels, in particular near the crack tip, such that the 

cracks continue to grow.  Historical data shows that once cracks form in an aluminum 

structure, they will grow in length exponentially until the structure ultimately fails. 

Inspection of entire aircraft structures for fatigue damage is tedious and expensive, in 

addition to the costs associated with repairing the cracks once detected.  

Fiber Metal Laminates (FML) represent part of this third evolution of aircraft 

structure materials.  More commonly known under the more general term of hybrid 

materials, the history of fiber metal laminates began at Technical University Delft, in the 

Netherlands.  “Despite a long standing dominance in the field of aerospace technology, 

U.S. researchers were not the first to realize the benefits of metallic laminated structures” 

(Cox, 2009, p. 2).  The need to create laminated structures began shortly after World War 

II in the Netherlands who, due to war damages, lacked the expensive metal working 
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equipment required to fabricate intricate aircraft structures (Vermeerern, 2003).  Thus, 

the need to research bonded structures and the resulting innovations spawned from 

necessity. They needed a new method of fabricating aircraft structures if they were to 

rebuild themselves.  

Fiber Metal Laminates consist of monolithic sheets of aluminum and glass fiber 

reinforced polymer epoxy bonded together.  Researchers at Delft University showed that 

these metal laminates displayed greater mechanical properties than those of traditional 

monolithic materials, and by adding glass fibers to the plastic adhesive material they were 

able to achieve even greater mechanical properties when compared to monolithic 

aluminum (Vlot, 2001).  By adding fibers to these hybrid materials, the researchers at 

Delft University created Fiber Metal Laminates. One such Fiber Metal Laminate was 

GLARE, which is an acronym formed by combining the two terms GLAss and 

REinforced.   

GLARE is produced from thin sheets of monolithic aluminum bonded together 

with an FM94K epoxy adhesive containing embedded S-2 glass fibers running in parallel.  

Researchers at Delft noticed how the addition of the glass fibers gave the material the 

added strength required for the material to achieve mechanical properties similar to that 

of monolithic aluminum (Vlot, 2001).  Some of the remarkable properties this material 

provided were the ability to inhibit fatigue crack growth, increased damage tolerance, and 

lower weight per volume when compared to aluminum.  “GLARE exhibits superior 

damage tolerance due to its crack bridging mechanism” (Vlot & Gunnink, 2001, p. 220).  

The material used in this research effort was GLARE-3 whose lay-up consisted of thin 
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sheets of aluminum bonded together with pre impregnated (prepreg) glass fibers as 

shown in figure 1.  

 

 

Figure 1.  Illustration of Generic GLARE Lay-Up (CYTEC, 2009) 

 

 

The unique properties of fiber metal laminates are what give the material its 

excellent fatigue characteristics and corresponding long inspection intervals.  The time 

between fatigue initiation and the formation of a critical crack, called crack growth life, is 

significantly longer for fiber metal laminates compared to monolithic aluminum. 

“Initiation was defined as the fatigue life up until an initial crack of 1mm length has been 

formed.  The crack growth life was then considered as the life from the initial length or 

greater up to critical crack lengths” (Alderliesten, 2009a, p. 1255). 

Fiber metal laminates actually develop small cracks earlier in their lives than 

monolithic metallic structures.  However, the crack growth rate in fiber metal laminates is 

much slower than the crack growth rates of aluminum, which allows fiber metal 

laminates to remain a structurally sound material for longer of periods of time. “…it is 

clear that the fiber bridging [in fiber metal laminates] induced slow crack growth and 
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larger critical crack lengths…give a significant increase in life.  This not only translates 

into longer inspection intervals, but because of the longer crack lengths that can be 

detected potentially during inspection, it will also shift the inspection threshold further in 

time” (Alderliesten, 2009a, p. 1256).  This increased inspection interval could hold the 

key to finding additional Operations and Maintenance (O&M) savings. 

Specific Background 

Due to the high operations tempo seen in the early part of the 21st century, the 

aging process for many U.S. Air Force aircraft structures has accelerated, which in turn 

has caused increases in the frequency and duration of aircraft inspections.  These 

increased inspections caused the O&M costs associated with sustaining these aircraft to 

increase. From 2001-2005, 37% of U.S. Air Force’s maintenance man-hours were spent 

on inspecting and repairing cracks and corrosion associated with an aging fleet (Fredell, 

Gunnink, Bucci, & Hinrichsen, 2007).  The structural issues just described gave birth to 

the need for a new material solution. 

As of 2007, the average age of U.S. Air Force’s aircraft was approximately 26 

years (Fredell, Gunnink, Bucci, & Hinrichsen, 2007).  Table 1 depicts the actual averages 

for specific airframes in the U.S. Air Force fleet inventory.  The age of an aircraft is 

irrelevant if the issues and symptoms associated with the aging process can be effectively 

managed. The viability of these aircraft becomes a more accurate measure to gage the 

health of an aircraft fleet.  An aircraft which must be grounded more frequently for 

tedious inspections or an aircraft that has weight restrictions placed on it is considered 

less viable than an aircraft without these maintenance burdens.  Therefore, this research 

examines one specific method of managing these structural issues by researching the 
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feasibility of using 3rd generation materials for 2nd generation aircraft material structures 

in an effort to extend the service life of the overall military weapon system and lower the 

O&M costs associated with sustaining these aircraft.  

 

Table 1.  Average Age of Specific U.S. Air Force Aircraft 

Aircraft Average Age(Years) 

KC-135 48 

C-130E 40 

B-52 46.6 

F-15 25.5 

 

 

The aircraft in Table 1 have structures built from monolithic aluminum due to the 

fact that these aircraft were designed and built during the time when monolithic 

aluminum was the prevalent aircraft structure material being used.  These materials are 

beginning to fatigue resulting in increased maintenance costs.  “Current trends in aircraft 

operations are showing an increasing demand for lower operational and maintenance 

costs. Practically, this translates into aircraft with longer design lives, longer inspection 

intervals, and shorter inspection downtimes” (Alderliesten & Benedictus, 2008, p. 1184).  

Aircraft availability is crucial during high operational environments much like that 

experienced during the Iraq and Afghanistan wars.  

With the average age of the C-130 fleet approaching 40 years, these second 

generation materials have been required to operate well beyond their initial design 

lifetimes.  The number of critical cracks that have developed in the aircraft structures has 
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increased significantly.  The costs associated with inspecting the entire aircraft structure 

and the costs associated with repairing those cracks have increased.  The cargo floor on 

the C-130 is repeatedly subjected to impacts.  Over time, these repeated impacts cause 

cracks to form and eventually grow in length sufficient to warrant the replacement of an 

entire floor panel.  One of the added benefits associated with fiber metal laminates is the 

reduction of inspection and repair frequencies typically associated with aluminum.  “The 

need for FML structures originates from the desire to develop damage tolerant structures 

that are carefree (i.e. low inspection and maintenance burden)” (Alderliesten, 2009a, p. 

1258).  This provided an additional area where an investment made in using this material 

could potentially pay for itself over the material’s life-cycle.  GLARE was developed 

with the purpose of providing a feasible replacement for aluminum that lowered O&M 

costs. 

Problem Statement 

The cargo floor of the C-130 is a secondary structure that warrants research into 

the feasibility of using a fiber metal laminate material.  The high operation tempo in Iraq 

and Afghanistan has resulted in increases in the number of impacts experienced due to 

increases in the numbers and types of missions performed.  AC-130 gunships have 

subsequently had to increase the thickness of the cargo floor in sections, and thus adding 

weight, to accommodate the added stresses associated with the use of the onboard guns.  

“Efforts have been made to reinforce the standard cargo flooring, undoubtedly adding 

weight.  Hybrid structures may enable this type of loading history with minimal 

degradation of performance” (dagsi.org, 2009).  This situation more than warrants the 

study for a new feasible replacement material. 
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Research and Development management within the Air Force exists to facilitate 

the process of mating feasible new technology solutions to existing problems.  The 

process consists of stating and defining a known problem and then determining what 

research should be accomplished to focus on feasible solutions.  Lastly, it involves 

marketing the new technology to possible users who might be able to use the new 

advantages provided by this new technology. 

Research Objectives 

 The aim of the current research is to characterize the mechanical behavior and 

impact resistance properties of GLARE, coupled with an economic business case 

analysis, to compare with published material requirements for a cargo floor and the 

properties 0.08” monolithic aluminum.  Additionally, this effort consisted of examining 

the process used for mating a known material problem or issue with potential 

replacement materials.  This process included testing the materials and analyzing the 

experimental data to determine if the GLARE material would be a feasible candidate for 

a cargo floor replacement material.  To test whether or not this process was valid, an 

available fiber metal laminate specimen was used to obtain experimental test data for 

comparison to data obtained from theoretical models.  Another objective of this research 

effort is to be able to generalize the numerical findings from the theoretical model to be 

able to accurately predict how other GLARE lay-ups would perform under the same 

given loading and bending conditions. 

The material used in this research effort was GLARE-3 in a 6/5 stack, meaning 

the material is composed of six 0.3mm thick layers of 2024-T3 aluminum bonded 

together with five layers of prepreg.  In this instance, each layer of bonding consisted of 
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two separate layers: one with fibers running in a 0 degree fiber orientation and the other 

with fibers running in a 90 degree orientation.  The GLARE-3 in a 6/5 stack was the only 

GLARE material available for experimental testing.  Figure 2 shows the lay-up in greater 

detail. 

 

0.0118 inch 2024 T3 Aluminum 
0.010 inch Prepreg (0 & 90 degree fiber orientations) 

0.0118 inch 2024 T3 Aluminum 
0.010 inch Prepreg (0 & 90 degree fiber orientations) 

0.0118 inch 2024 T3 Aluminum 
0.010 inch Prepreg (0 & 90 degree fiber orientations) 

0.0118 inch 2024 T3 Aluminum 
0.010 inch Prepreg (0 & 90 degree fiber orientations) 

0.0118 inch 2024 T3 Aluminum 
0.010 inch Prepreg (0 & 90 degree fiber orientations) 

0.0118 inch 2024 T3 Aluminum 
 

Figure 2.  GLARE-3 6/5 Lay-Up Illustration 

 

 

Research Questions 

Do the mechanical properties of this material make it feasible to serve as a 

suitable and qualified replacement for use as a cargo panel on C-130 aircraft?  Does the 

material meet the minimum bending and impact resistance requirements to perform the 

cargo floor function?  What are the advantages of using this material compared to 

monolithic aluminum?  The main material properties being researched are impact 

resistance, elastic modulus, bending deflection as a function of bending moment, and 

possible weight savings.  The importance of these properties will be discussed later.  

What are the life-cycle costs associated with the use of this material?  Is there any 
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potential for O&M savings?  Data from designed experimentation and modeling will be 

analyzed in an effort to answer each research question. 

Methodology Overview   

The process in this research effort consists of developing a theoretical model, 

based on classical laminated plate theory and validated by experimental data, to predict 

the materials behavior under loading, bending, and impact energy in an effort to 

determine if this third generation material is a feasible candidate for use as a replacement 

material for use on an aircraft produced from second generation materials.  Data related 

to the mechanical properties for this research effort will be generated through theoretical 

modeling and validated by testing the material. The experimentation will include testing 

to determine the material’s elastic modulus, deflection properties, and impact resistance.  

Experiments to determine elastic modulus and bending profiles will be performed solely 

on GLARE as the specific mechanical properties of 2024 T3 aluminum are widely known 

and testing is not necessary.  The data obtained from the tensile and bending tests will be 

compared against the known properties of aluminum and also against the design 

requirements for cargo floors on large wide-bodied, fixed-wing aircraft.  Impact 

resistance testing will be performed on both GLARE and 2024 T3 aluminum to generate 

data to analyze GLARE’s impact resistance compared to aluminum.  The impacts will be 

examined for dimple depth and material failure. Analysis of this experimental data should 

provide the impact energy the material is able to withstand.  

Data for use in the business case analysis will be gathered from the existing 

literature.  Specifically, data relating to government depot maintenance labor rates, 

material repair frequencies and repair duration, and material cost will be obtained on 
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2024 T3 aluminum and GLARE for a life-cycle cost comparison.  This data will then be 

used in a life-cycle cost analysis to predict the cost of using GLARE versus aluminum. 

Assumptions and Limitations 

This research effort is limited.  It will not include qualification or certification of 

this material for use onboard a C-130 cargo aircraft.  Some of the experimental 

limitations included the machinery available for testing.  For the impact testing a 5/8” 

spherical impactor was not available and testing was performed using a 1/2” spherical 

impactor.  The weights available for the impact tower were limited to the weight scheme 

provided by the dynatup impact tower.  The closest available masses were utilized to 

obtain impact energies as close to the required impact energy as possible. 

The type of material available for testing was another limiting factor.  The 

material available for use in various experimentation was a 24” x 24” GLARE-3 panel in 

a 6/5 stack with 0 and 90 degree prepreg fiber orientations.  This was the only available 

stacking sequence of GLARE-3 available for testing. 

Significance of Study 

Currently, there is not any literature on use of a fiber metal laminate onboard a 

military aircraft for use as a cargo floor to replace the existing monolithic aluminum or 

plywood.  Additionally, in the research and development field, there is not a specific 

process that takes the material needs of a customer and produces hybrid material 

candidates as possible solutions for suitable material replacement.  This research effort 

will build such a process to enable research and development personnel to determine if 

feasible fiber metal laminate solutions exist.  That is, do these new hybrid materials meet 

or exceed the stated mechanical properties required from monolithic metallic structures? 
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Additionally, none of the cargo or tanker aircraft in the Active, Reserve, or National 

Guard fleet inventory currently use hybrid materials or fiber metal laminates as their 

cargo floor panels.  

Currently, the only cargo aircraft in the United States Air Force fleet that utilized 

a Fiber Metal Laminate material in production was the C-17.  The outer skin on rear 

cargo ramp doors of 40 C-17 aircraft was made from a fiber metal laminate similar to 

GLARE called Arall in an effort to reduce the weight in that section of the aircraft.  

“After qualification, the Arall-3 material could be applied in the C-17 cargo aircraft of 

the US Air Force.  The tail section of this aircraft was too heavy and therefore a desperate 

search for possible weight savings in the back made the application of Arall possible” 

(Vlot, 2001, p. 91). 

The following chapter will focus on what other researchers have accomplished in 

this field of study as it relates to this effort including validation of the proposed methods 

and testing matrix by comparing those methods to methods of several other researchers 

and sources in the existing literature.  It will also discuss classical laminated plate theory 

(CLPT) and mass volume fraction; these two estimation tools or techniques were used to 

determine the theoretical mechanical properties of GLARE-3 and construct a theoretical 

model for material behavior.  Chapter III will delve into the methodology behind the 

model development and experimentation processes in greater detail. Chapters IV and V 

will discuss the analysis of the experimental data and compare those results to the 

theoretical model.  This will be followed by some discussion on the findings and 

suggestions for future work. 
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Chapter II.  Literature Review 

 

 The accepted process repeated throughout literature for determining the 

mechanical properties of hybrid and composite materials consists of two steps.  They 

used mathematical theory to estimate the properties of hybrid materials and various 

experimentation methods to test the material in an effort to gather data for comparison 

and eventually validation of their theoretical model.  This chapter will discuss what has 

been accomplished in this research area.  Specifically, this chapter will present the 

experiments and numerical theories that have been used to evaluate the tensile, bending, 

and impact properties of an unknown hybrid material and the resulting expected benefits 

of using this material.  

Mathematics and Theory for Model Formulation 

The mechanical properties of GLARE-3 in a 6/5 stack are not as widely published 

or known compared to the properties of 2024 T3 aluminum.  This is due to the versatility 

of the GLARE material, its relative “newness” in the industry, and some proprietary 

manufacturing restrictions.  The fact that a seemingly infinite number of “stacks” can be 

produced with different layering thicknesses and prepreg fiber orientation combinations 

make the task of cataloging the mechanical properties of each unique stack nearly 

impossible.  However, the mechanical properties of each individual component in 

GLARE are known.  The elastic modulus, density, and other properties are shown in 

Table 2 for both the 2024 T3 aluminum sheets and the prepreg material containing the S-

2 glass fibers.  
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Table 2.  Mechanical Properties of Aluminum and Prepreg (Alderliesten, 2009a) 

 Aluminum Prepreg 

E1(GPa) 72.4 48.9 

E2(GPa) 72.4 5.5 

G12(GPa) 27.6 5.55 

ν12 0.33 0.33 

ν21 0.33 0.0371 

 

The process in this research effort for determining potential candidates for a 

substitute material includes determining the mechanical properties of the material and 

comparing those properties with values provided by the manufacturer.  The published 

figures, if any, must be checked as precaution to ensure the Air Force is receiving the 

specified material properties.  Making the assumption that the manufacturer’s numbers 

are correct adds risk to the process that can be easily mitigated with a few simple bench-

level experiments. 

While the mechanical properties of each individual component ( 2024-T3 

aluminum, FM94K adhesive, and S-2 glass fibers) are widely known, their combined 

properties in a 6/5 stack are not as widely known or available, especially for fiber matrix 

directions other than in the 0 or 90 degree orientation.  To determine the mechanical 

properties, the first step was to establish the materials Modulus of Elasticity (E) in the 

material’s 1 and 2 directions for the 0, 22.5, 45, and 90 degree fiber orientations.  Testing 

in the 67.5 degree orientation was omitted due to its symmetry with the 22.5 degree fiber 

orientation.  Figure 3 illustrates the material with respective fiber orientations; as shown 
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in the figure, the 1 and 2 directions are parallel and perpendicular, respectively, to the 

fiber orientation.  

 

 

Figure 3.  Material and Fiber Orientation (eFunda, 2009) 

 

 

The second part of this theoretical modeling effort included using the model to 

predict the deflection of the material for a given bending moment.  The bending 

experimentation thus provided the required data to validate the theoretical model.  The 

third experimentation effort consisted of observing how the material reacted to various 

energy impacts and comparing those findings to the same energy impacts on a monolithic 

aluminum the same thickness as the C-130 cargo floor.  

Mass Volume Fraction 

This effort uses two of the primary material property estimation techniques or 

theories to validate the proposed model.  The first technique used for calculating the 

Elastic modulus for GLARE was Mass Volume Fraction (MVF) as shown in Equation 1 

ଵܧ                                ൌ ଵ௔ܧ
௏ೌ

௏೟
ଵ௣ܧ + 

௏೛

௏೟
ଶ௣ܧ+ 

௏೛

௏೟
                                            (1) 
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where…   ܧଵ௔ ൌ The elastic modulus of aluminum in the material 1 direction 

௏ೌ

௏೟
ൌ The ratio of the volume of aluminum to the total material volume 

ଵ௣ܧ ൌ The elastic modulus of prepreg in the material 1 direction 

௏೛

௏೟
 = The ratio of the volume of prepreg to the total material volume 

ଶ௣ܧ ൌ The elastic modulus of prepreg in the material 2 direction 

This formula takes into account the volume based percentage of each component: 

the aluminum, the 0 degree prepreg and the 90 degree prepreg with respect to the material 

1 direction.  Given that E1a= 72,400 MPa, E1p= 48,500 MPa, and E2p=5,500 MPa, 

Equation 1 can be solved to produce 53.7 GPa or 7,788 ksi for E1.  Figure 4 depicts the 

linear approximation used for calculating the properties of hybrid materials and where 

GLARE-3 in a 6/5 stack occurred as a function of constituent material composition.  
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Figure 4.  Elastic Modulus of the Laminate as a Function of MVF percentage Aluminum 

 

 

MVF is the simpler of the two techniques used as it is simply the sum of each 

material’s respective elastic modulus multiplied by its respective volume percentage.  

However, a limitation to MVF is that it is only valid for estimating the elastic modulus of 

the material and not intended for determining bending deflection or other needed 

properties.  Its purpose is a correctness check for the initial development of the 

theoretical material model to validate the theoretical numbers produced by the proposed 

model.  MVF is heavily cited in the literature as a means to quickly and accurately 

ascertain a material’s elastic modulus in orientations parallel and perpendicular to the 

fiber directions.  



19 
 

Classical Laminated Plate Theory 

The second theoretical method used was Classical Laminated Plate Theory 

(CLPT).  This method is more rigorous both mathematically and conceptually.  It has 

been used heavily in academia and among researchers in numerous areas involving 

hybrid materials, specifically fiber metal laminates, as a tool to estimate the mechanical 

properties of laminate materials when the properties of each component are known.  

CLPT is also useful in determining the bending profile for a given material specimen for 

any given load or loading situation.  For this research, the calculated properties were then 

compared to published data for maximum allowable loading for a C-130. 

One of the advantages of fiber metal laminates is their strength in the direction of 

the glass fibers; however, a disadvantage is their relative lack of strength in the off-axis 

directions.  “Unidirectional reinforced fiber composites have superior properties only in 

the fiber-direction. In practical applications, laminae with various fiber orientations are 

cured together to form laminated composites which are capable of carrying loads of 

multiple directions.  Due to the lamination, the material properties of a laminate become 

heterogeneous over the thickness” (Sun, 1993, p. 38).  Therefore, testing the material in 

the off-axis directions is a must if the mechanical properties of the material as whole are 

to be known.  This reveals just how weak the material was in the off-axis directions. 

One could also follow an engineering approach and determine the 
behavior of the whole glare laminate for each property and configuration.  
From this data the correlation between the property values of each 
configuration can then be established. An example of this is the Metal 
Volume Fraction (MVF) method. Though this method reduces the 
elaborate testing of laminate lay-ups, still many tests on possible laminate 
lay-ups with inherently complex failure modes (which are determined by 
both aluminum and the glass fibre epoxy layers in several orientations) 
remain necessary.  (Hagenbeek, 2005, p. 24) 
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“The classical laminated plate theory is an extension of the classical plate theory to 

composite laminates” (Reddy, 2002, p. 112).  Since it is based on classical plate theory, 

the main assumption for laminated plate theory is that the equations only hold true for 

very thin plates.  A very thin plate is defined as one whose thickness is many times 

smaller than its width (t<<<w).  Additionally, the normal directions remain in the normal 

direction, remain the same length, do not stretch, and do not bend.  A normal is defined 

as direction perpendicular in two or three dimensional space. 

“For a laminated composite plate, the material properties can be quite different 

from layer by layer, and the stress distribution may be significantly different between 

layers.  As a result, it is desirable to express the moment and force resultants in terms of 

the normal and the shear stresses in each layer” (eFunda, 2009).  This explains how 

CLPT uses the properties of each individual lamina in conjunction with the properties of 

all other components, to project the laminated material’s mechanical properties.  

The first step using CLPT was to populate the constitutive equations which 

related the stress and strain in each lamina by means of the stiffness matrix [Q] based on 

the material properties of each independent material component as shown in Equation 2, 

  ܳ ൌ

ۏ
ێ
ێ
ۍ

ாభభ

ଵିజభమజమభ

జమభாభభ

ଵିజమభజభమ
0

జభమாమమ

ଵିజభమజమభ

ாమమ

ଵିజభమజమభ
0

0 0 ےଵଶܩ
ۑ
ۑ
ې
                                           (2)  

“Since the laminate is made of several orthotropic layers with their material axis 

oriented arbitrarily with respect to the laminate coordinates, the constitutive equations of 

each layer must be transformed to the laminate coordinates” (Kim, Thai, & Lee, 2009, p. 

199).  This ensures that each layer in the overall material is contributing its mechanical 
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properties in its respective material 1 or 2 direction relative to the overall laminate 

material’s 1 or 2 direction.  The equations for the transformation matrix and its 

coefficients can be shown as (Reddy, 2002), 

                                       ൝
ଵߪ
ଶߪ
଺ߪ

ൡ=൥
ܳଵଵ ܳଵଶ ܳଵ଺
ܳଶଵ ܳଶଶ ܳଶ଺
ܳ଺ଵ ܳ଺ଶ ܳ଺଺

൩ ൝
ଵߝ
ଶߝ
଺ߝ

ൡ                                               (3) 

where ߪଵ ൌ a given stress; ߝଵ ൌ the resulting strain; ܳ௜௝= are determined from Equation 2 

The first equation shows the laminate relation to stress and strain via the stiffness 

matrix.  An equation like this exists for each material type within the overall laminate. 

These equations will need to be transformed to relate their relative material orientations 

to the orientation of the overall laminate.  The coefficients for the transformed stiffness 

matrix can be shown as: 

                                              ൝
ଵߪ
ଶߪ
଺ߪ

ൡ=቎

തܳଵଵ തܳଵଶ തܳଵ଺
തܳଶଵ തܳଶଶ തܳଶ଺
തܳ଺ଵ തܳ଺ଶ തܳ଺଺

቏ ൝
ଵߝ
ଶߝ
଺ߝ

ൡ                                               (4) 

 

where    തܳଵଵ ൌ ܳଵଵܿݏ݋ସߠ ൅ 2ሺܳଵଶ ൅ 2ܳ଺଺)݊݅ݏଶݏ݋ܿߠଶߠ ൅ ܳଶଶ݊݅ݏସߠ 

തܳଵଶ ൌ ሺܳଵଵ ൅ ܳଶଶ െ 4ܳ଺଺ሻ݊݅ݏଶݏ݋ܿߠଶߠ ൅ ܳଵଶሺ݊݅ݏସߠ ൅  തܳଶଵ = ߠସሻݏ݋ܿ

തܳଵ଺ ൌ ሺ2ܳଵଵ െ 2ܳଵଶ െ ܳ଺଺ሻݏ݋ܿߠ݊݅ݏଷߠ ൅ ሺ2ܳଵଶ െ 2ܳଶଶ ൅ ܳ଺଺ሻ݊݅ݏଷߠ ൅   ߠݏ݋ܿ

തܳ଺ଵ ൌ  തܳଵ଺ 

തܳଶଶ ൌ  ܳଵଵ݊݅ݏସߠ ൅ ሺ2ܳଵଶ ൅ ܳ଺଺ሻ݊݅ݏଶݏ݋ܿߠଶߠ ൅ ܳଶଶܿݏ݋ସߠ 

തܳଶ଺ ൌ ሺ2ܳଵଵ െ 2ܳଵଶ െ ܳ଺଺ሻܿ݊݅ݏߠݏ݋ଷߠ ൅ ሺ2ܳଵଶ െ 2ܳଶଶ ൅ ܳ଺଺ሻܿݏ݋ଷߠ ൅  ߠ݊݅ݏ

തܳ଺ଶ ൌ  തܳଶ଺ 

തܳ଺଺ ൌ 2ሺ2ܳଵଵ ൅ 2ܳଶଶ െ 4ܳଵଶ െ ܳ଺଺ሻ݊݅ݏଶݏ݋ܿߠଶߠ ൅ ܳ଺଺ሺܿݏ݋ସߠ ൅  (ߠସ݊݅ݏ
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Once the matrix has been transformed for material orientation the coefficients for 

the plate constitutive equation can be computed.  These coefficients are determined by 

the following formulae, 

௜௝ܣ                                                  ൌ ∑ തܳ
௜௝
௞௅

௞ୀଵ ሺݖ௞ାଵ െ  ௞ሻ                                             (5)ݖ

௜௝ܤ                                                   ൌ ଵ

ଶ
∑ തܳ

௜௝
௞௅

௞ୀଵ ሺݖ௞ାଵ
ଶ െ ௞ݖ

ଶሻ                                          (6) 

௜௝ܦ                                                   ൌ ଵ

ଷ
∑ തܳ

௜௝
௞௅

௞ୀଵ ሺݖ௞ାଵ
ଷ െ ௞ݖ

ଷሻ                                          (7) 

where  ݖ௞ାଵ ൌ the distance from the midpoint of the laminate to the centroid of the k-th 

layer. 

The plate constitutive equation is then used to produce material strains and 

bending curvatures for any given load N or bending moment M.  This equation is 

commonly referred to as the ABBD matrix and is normally represented in the simpler 

form. 
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The next section of this chapter will shift from theoretical model development to 

review experiments other researchers have accomplished on hybrid materials in an effort 

to gain a better understanding of the testing procedures.  
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Tensile Testing 

The uni-axial tensile test is a common experiment used for producing stress strain 

curves.  The slope of the stress strain curve in the elastic region of deformation is then 

used to determine the elastic modulus in a material.  This type of test has been reported 

numerous times throughout the literature.  Specifically, Cook and Donnellan (1991) 

performed tensile testing on specimens of GLARE similar to the material lay-up used in 

this effort. 

“Flat, 1/2 inch wide specimens were machined per ASTM B557 by AKZO.  Tests 

were run on an MTS closed loop servo hydraulic test machine, operated in load control” 

(Cook & Donnellan, 1991, p. 2).  The testing machinery available for this research effort 

is identical to the machinery used in their experiment.  This provided a solid benchmark 

to be used in the current experiment.  Additionally, it provided numerical data values that 

could be used for comparison purposes to ensure the data was accurate for use in 

validating the theoretical model.  

Hagenbeek (2005) performed tensile tests on GLARE-2, GLARE-3, and GLARE-

4 variants, each in a 3/2 lay-up.  The tests were performed with dog bone specimens, 

which allowed the experimenter to control where the point of failure would occur, which 

is the thinnest cross section of the specimen.  Resulting stress strain curves were obtained 

and used to determine the experimental elastic modulus of each GLARE variant.  

Hagenbeek (2005) then used these values to validate his theoretical model. 

Bending 

 Another important mechanical property to consider when searching for potential 

cargo floor replacement materials is the material’s bending profile with respect to 
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loading. The bending profile must be analyzed against the maximum allowable loads to 

predict how the GLARE material will respond.  Cook and Donnellan (1991) performed 

similar bending tests on different lay-ups of GLARE to determine the maximum 

allowable shear stress.  They performed a 3-point bending test using the same ASTM 

standards used in this research effort.  Within CLPT, this effort’s model should be able to 

predict the bending profile for a specific laminate composition for a given load or 

moment.  Once the bending profile is determined, the maximum deflection can be found 

and compared to published maximum allowable displacement values for current cargo 

floor panels. Concurrently, the bending data from GLARE will be compared to the 

bending profile of 2024 T3 aluminum to see how GLARE performs compared to 

aluminum.  The data obtained from these bending experiments will be used to compare 

with the theoretical values produced by the model and then validate or invalidate the 

model. 

 GLARE, due to its S-2 glass fiber composition, has been categorized as having 

high strain rate sensitivity, meaning that the material’s stress-strain properties are 

dependent on the rate of loading.  The material is predicted to behave differently when 

loaded slowly versus quickly for a given load.  Therefore, one of the critical properties 

this material would need to possess is a high tolerance of, or the ability to withstand, 

repeated exposure to high strain loading conditions.  This effect might possibly surface 

during the impact loading experimentation. 

Impact 

 Since cargo floors are considered secondary aircraft structures, the main 

mechanical property of interest it its resistance to impact damage and its residual strength 
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after impact. “…the good impact resistance of GLARE is partly due to the strain rate 

sensitivity of the glass fibers in the material” (Vlot & Krull, 1997, p. 1049).  Moving 

away from the theoretical side of the literature review, there are some practical 

applications and instances where this material has been used in industry.  The Boeing 

Dreamliner has installed GLARE for use as its bulk cargo floor material.  “In 1990, the 

excellent impact properties of GLARE were put to work in a cargo floor of the Boeing 

777…because floor structures are particularly prone to impact damage.  This was the first 

commercial application of a GLARE product” (Vlot, 2001, p. 101).  Although the cargo 

floor is not a primary structure in that it does not carry any loads required to maintain 

flight, it does experience repeated impact loads from day-to-day use. 

Vlot and Krull (1997) performed impact testing on several GLARE variants and 

lay-ups, carbon composites, and monolithic aluminum using a 5/8” spherical impactor. 

The objective of their research was to analyze the differences between low velocity and 

high velocity impacts holding the impact energy constant and thus varying the mass of 

each impactor to achieve constant impact energies.  They performed several series of 

experiments trying to find the minimum energy required to cause cracking on the reverse 

impact dimple. 

Liaw, Liu, and Villars (2001) performed a series of impact tests on unidirectional 

and multidirectional, to include off-axis fiber orientation matricides, in ARALL and 

GLARE to see which properties or fiber matrix directions made the material more impact 

resistant than the others and to see what effect temperature had on the impact properties.  

They conducted some experiments at room temperature and found a range of impact 

energies required for a given GLARE-5 material thickness.  GLARE-5 is a cousin of 



26 
 

GLARE-3 and is composed of the same materials, aluminum and prepreg, with a slight 

modification to the stacking sequence and fiber matrix orientation.  In addition to the 0 

and 90 degree fiber matrix, GLARE-5 contains an additional third layer of prepreg with a 

45 degree fiber orientation in between each of the aluminum layers.  

“An important feature shown after impact is that the damage in GLARE, 

permanent deformation and denting of the aluminum layers can be easily found by visual 

inspection.  Delamination, matrix cracking, or fibre breakage was also found to be limited 

to the dent area” (Hagenbeek, 2005, p. 17).  This finding illustrates the impact resistance 

of the material and its ability to limit damage from impact energy events to the location 

of the damage.  Also noted in this work was the material’s ability to absorb the energy 

from a 2.25 inch ball of ice traveling at speeds over 300 miles per hour, during a 

simulated hail storm strike, without denting the material or delaminating the material. 

The size and shape of the impactor used will affect the results of the impact test; a 

large spherical impactor will be able to dissipate greater amounts of energy, thereby 

allowing the material to absorb larger amounts of energy before cracking occurs (Liu & 

Liaw, 2007).  This fact is important for making comparisons to other energy values found 

in other research efforts.  Liu and Liaw (2007) conducted several experiments on 

GLARE-2 and GLARE-3 in 0.05 inch thicknesses to obtain data on the energy each 

variant was able to absorb as a function of impactor shape and size.  

Currently, the only Air Force aircraft application of a fiber metal laminate has 

been on the outer skin section of the aft cargo ramp on 40 C-17 transport aircraft.  While 

the GLARE material has been applied to the bulk cargo floors on a commercial airliner, 
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the idea of using a GLARE variant as the cargo floor material onboard a military cargo 

aircraft has not been published in the literature. 

Cargo Floor and Material Requirements 

Currently most if not all wide-body Air Force cargo floors are designed to carry 

cargo loads and withstand low velocity impacts experienced during routine day-to-day 

loading and unloading activities.  Figure 5 depicts the maximum allowable cargo floor 

loads for an Air Mobility Command (AMC) C-130 aircraft. 

 

Figure 5.  C-130 Flight Limitations Chart (Field Manual (FM) 55-9) 

 

 

Analyzing Vlot and Krull’s (1997) experiments with various GLARE stacks and 

thicknesses, it was determined that the minimum energy required to cause cracking for 
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the GLARE-3 6/5 stack would be in the neighborhood of 40 Joules using a 1/2” spherical 

impactor.  Cracking is the term used to describe the crack produced by a failed material 

associated with the resulting dimple caused by the impact event.  “Damage mechanisms 

due to low energy impact onto composite panels have been studied extensively.  In 

general they are characterized by incomplete penetration with damage consisting of 

delamination, matrix cracking, and fiber failure.  However, the exact failure mode and 

damage evolution sequence are greatly affected by the constituent properties, lay-up, 

configuration, thickness, and bending rigidity.   “For instance, experimental studies 

consistently report that very often delamination occurs at the interface between plies with 

different fiber orientation” (Liaw, Liu, & Villars, 2001, p. 536). 

Economic Advantages 

The weight savings GLARE has to offer, due to the lower density of the material, 

and the advantageous mechanical properties seen in many fiber metal laminates provides 

an opportunity to provide a replacement material that lowers the overall weight of the 

aircraft.  “…the glass fibre epoxy layers [in GLARE] have a considerably lower weight 

than monolithic aluminum, 1.96g/cm3 vs. 2.77 g/cm3, and can offer approximately 10% 

material and 20-30% structural weight reduction even for ‘cross-plied’ laminates” 

(Hagenbeek, 2005, p. 16).  Weight reduction for war-fighting aircraft makes their aircraft 

more versatile.  Every pound of aluminum they are able to shed translates into one pound 

more of fuel or cargo, which helps aircraft fly further and accomplish more.  Aircraft 

with serious weight restrictions, such as the AC-130 gunships which constantly push their 

maximum allowable wartime takeoff weights, could benefit greatly from this new 

material.  
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“AFSOC’s [Air Force Special Operations Command] challenges require listing to 

keep them in view such as the fleet-wide problems in the C-130 aircraft with the 

discoveries of the center-wing box cracking problems due to extended combat operations 

at high gross weights.  This will result in the grounding for repair of approximately one 

third of all AFSOC aircraft over at least the next two to three years” (Murdock, Grant, 

Comer, & Ehrhard, 2007, p. 28).  This research effort will look into whether or not the 

GLARE material in its current lay-up would meet the published requirements for 

maximum loading and impact resistance, and then examine the amount of weight savings 

that could be realized if the material becomes certified for use on military aircraft.  

The potential for weight savings along with reduced maintenance costs and 

aircraft downtime, are critical if this technology is to be adopted.  Unless a new 

technology meets a critical flight safety issue or saves a human life, without some form of 

“payback” or potential long-term life-cycle cost savings, no agency in the Air Force 

would unlikely be willing to accept the use of GLARE material.  Additionally, the 

technology transfer community would probably not be willing to take on the additional 

workload of further testing the material without some sort of added benefit associated 

with using the material.  Although “payback” is typically monetary, the potential weight 

savings may also bring added capability to current aircraft which would also be 

considered some form of payback.  

Experimentation Phases 

The research and development career field manages only part of a new 

technology's journey as it climbs the testing and validation pyramid towards actual use in 

the field.  The scope of the process mentioned in this research effort would be to take 
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known user requirements and mate them with potential material solutions.  Perhaps those 

material solutions are at a relatively low technology readiness levels such as level two or 

level three.  The job of this overall process is to obtain a greater understanding of these 

new technologies, in this instance their mechanical properties, to achieve a greater 

understanding of how the technology behaves in early small-scale experiments, then 

component testing, and finally full-scale testing and certification 

The Aircraft Structural Integrity Program (ASIP) exists to facilitate the safe 

transfer of new technology toward potential uses or applications.  The entire ASIP 

process is subdivided into five different areas or tasks.  Each of these tasks refer to five 

distinct phases the structure of an aircraft passes through along its life-cycle from 

material and structure conception all the way to management and sustainment activities.  

The research effort explained in this thesis would represent part of the activities 

associated with Task One, the design information phase.  In this phase small scale 

material testing occurs to determine the material’s feasibility for use as part of an aircraft 

structure.  Once all the parts in the first phase or task of the ASIP process have been 

completed and agreed upon, the program passes into Task Two, where larger scale 

testing, perhaps testing of assemblies, may begin.  Eventually, this process will deliver a 

certified material or even an entire aircraft to the warfighter as it enters the delivery and 

sustainment phase. 

The next chapter will review the methodology used in greater detail and describe 

the various experiments that were performed, along with the related standards and theory 

behind the tests and the analysis used to interpret the data.  Additionally, the formulation 
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of the economic business case will be discussed in detail, with the results and 

implications being discussed in Chapter IV. 
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Chapter III.  Methodology 
 

 This chapter will discuss the specifics regarding data collection and analysis for 

both the mechanical properties investigation of GLARE and the economic business case. 

The mechanical properties were first determined through modeling and validated by 

experimental testing.  Tensile, four-point bending, and impact testing will provide the 

data necessary to answer the question as to whether or not GLARE’s mechanical 

properties will meet the requirements of a cargo floor.  To determine if GLARE 

possesses the required properties, the experimental data will be compared to the 

published properties of 2024 T3 aluminum.  The adherence to credible experimental 

standards was paramount in this thesis effort to ensure the data collected was of the 

highest quality for use in validating the theoretical model.  The more credible the 

experimental data, the more credible the theoretical model.  The business case consisted 

of using cost data obtained from literature to predict the life-cycle costs for both 

aluminum and GLARE over a 30-year period.  Additionally, a sensitivity analysis was 

performed to add confidence to the business case. 

Tensile Testing 

 In the uni-axial tension experiments, ASTM standard D3552 was used to 

determine the specimen geometry and procedures required to perform the tensile testing.  

However, the scope of the tensile test was found to be outside the region specified by this 

standard.  “This test method covers the determination of the tensile properties of metal-

matrix composites reinforced by continuous and discontinuous high-modulus fibers.  This 

method only applies to specimens tested in the direction of reinforcement or 
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perpendicular to the direction of reinforcement” (American Society of Test and 

Measurement, 1976). 

 Since the tensile testing matrix included tests on materials with fiber orientations 

of 0, 22.5, 45, and 90 degrees, the experimental test would be operating outside the scope 

of this technical standard.  This issue is addressed later in the chapter and discussed in 

greater detail in Chapter IV.  The tensile testing utilized a 5 kip MTS machine and an 

extensometer.  Four specimens of each fiber orientation mentioned above were tested 

under tension until failure and the data was recorded by the MTS machine and the 

extensometer.  The data collected included the load, displacement, strain, and time. 

Sixteen dog bone test specimens, each measuring four inches in length and half an inch in 

width with a quarter inch neck, were excised from a two foot square panel of GLARE-3 

according to specifications stated in the ASTM standard mentioned above.  

Bending 

 The bending portion of the experiment was performed according to ASTM 

Standards D7264, Standard Test Method for Flexural Properties of Polymer Matrix 

Composite Materials, and D790 Standard Test Methods for Flexural Properties of 

Unreinforced and Reinforced Plastics and Electrical Insulating Materials.  This 

combination of standards was used to best approximate the standards required for testing 

a Fiber Metal Laminate since a standard for testing the flexural properties of a hybrid 

material currently does not exist.  There were minor differences in each of the testing 

standards and no issues were discovered that would have caused the invalidation of this 

test. 
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Six specimens total, three each with 0 and three with 90 degree orientations, were 

excised and prepared according to the ASTM standards.  The bending specimens were 

rectangular in shape measuring five inches in length and half an inch in width.   The same 

5 kip MTS machine was utilized in this experiment; however, the upper and lower 

tension-tension jaws were replaced by a 4-point bending apparatus.  Figure 6 illustrates 

the experiment set-up.  The displacement of each GLARE-3 specimen was measured 

with a laser calibrated and aimed at the midpoint of the specimen where maximum 

deflection would occur.  Data was collected on the MTS machine from the load cell and 

the laser.  The data collected was load, maximum displacement, and time.  

 

Figure 6.  Four Point Bending Test Apparatus 
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Impact 

 The impact testing was accomplished in a manner similar to experiments 

conducted by Vlot and Krull (1997) and Liu and Liaw (2007).  The objective of the 

impact tests was to conduct a series of impact tests at increasing energy ranges on both 

GLARE-3 and the material currently used for the C-130 cargo floor in its required 

thickness. This was done to have a direct comparison between the 0.08” thick monolithic 

2024 T3 aluminum, the current material used as the C-130 cargo flooring, and the 

GLARE material.  

The first series of impact tests ranged from 20 Joules to 100 Joules, with the 

velocity held constant 4.2 m/s and the mass of the impactor varied to reach the desired 

energy event.  To determine the mass required to achieve the required energy events, the 

following widely known formula was used: 

ݕ݃ݎ݁݊ܧ                                                           ൌ  ଵ

ଶ
ܸ݉ଶ                                                   (9) 

where m=the mass of the tup and drop carriage and V = the velocity of the tup the 

moment before impact. 

The second series of impact tests were conducted holding the mass constant at 2.5 

kg and varying the velocity to achieve the desired range of 20 to 100 Joules.  These two 

series of tests were performed to discover the differences, if any of varying mass or 

velocity on the impact crater.  Tests were performed from the low energy 20 Joules and 

increased until either penetration occurred or the 100 Joule upper range was reached.  

The impact testing was performed on a Dynatup impact tower. The tests in which the 

velocity was held constant were performed using gravity and height to achieve the 

desired velocity.  The tests performed holding the mass constant utilized preloaded 
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springs controlled by compressed air to achieve the desired impact velocities.  Figure 7 

shows the Dynatup impact tower and experimental test set-up.  Table 3 depicts the test 

matrix used for both the 2020 T3 0.08” aluminum and the GLARE impact strips. 

 

 

Figure 7.  Dynatup Impact Testing Apparatus 
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Table 3.  Impact Testing Numerical Test Matrix for GLARE-3 and 0.08 inch 2024 T3 
Aluminum respectively 

Test # Mass(kg) Velocity (m/s) Energy (J) Test # Mass(kg) Velocity(m/s) Energy (J) 
1 2.77 4.2 20 1 2.5 4 20 
2 4.54 4.2 40 2 2.5 5.65 40 
3 6.81 4.2 60 3 2.5 6.92 60 
4 9.08 4.2 80 4 2.5 8 80 
5 11.24 4.2 100 5 2.5 8.95 100 
 Mass(lb) Velocity(ft/s) E(ft-lbs)  Mass (lb) Velocity(ft/s) E(ft-lbs) 
1 6.10 13.77 14.76 1 5.5 13.12 14.76 
2 10 13.77 29.52 2 5.5 18.55 29.52 
3 15 13.77 44.29 3 5.5 22.69 44.29 
4 20 13.77 59.05 4 5.5 26.24 59.05 
5 24.77 13.77 73.75 5 5.5 29.35 73.75 

 

Data Analysis 

 Once data was gathered from each of the three experimental tests, it was 

compared to values generated by the theoretical model for validation.  The two main 

properties of interest were bending deflection and impact resistance.  Data obtained from 

the model and experiments were used to generate a bending profile for GLARE that 

displayed the maximum deflection of the material at its midpoint for a given load and 

respective bending moment.  That bending profile was then compared to a bending 

profile of 0.08 inch 2040 T3 aluminum to see how the two materials compared.  

 Impact data was collected on both GLARE and 0.08 inch 2024 T3 aluminum.  

The damage occurring from each impact energy event was recorded along with the 

minimum energy required to cause reverse side cracking.  Both GLARE and aluminum 

were analyzed for impact resistance and the minimum energy required to cause cracking. 
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Business Case 

 A business case analysis was developed by comparing the life-cycle costs 

associated with the use of GLARE or 2024 T3 aluminum over a 30-year period.  The life- 

cycle costs for each material were determined by adding all material and labor costs 

associated with using each respective material.  A sensitivity analysis was performed on 

the GLARE life-cycle cost to add a level of confidence to the figures and to see how 

sensitive the life-cycle costs would be to a +10% margin of error.  The results of the 

business case and the experiments can be seen in the following chapter. 
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Chapter IV.  Results 
 

 This chapter will first discuss the results obtained from each of the three 

experiments and the business case.  Based on these results this material’s potential as a 

replacement material for the C-130 aircraft cargo floor will be discussed.   

Experimental Results 

 The results of the tensile testing are shown graphically in Figures 8, 9, 10, and 11.   

Each of the four respective figures display the experimental stress versus strain curves 

obtained from each respective fiber orientation.  The slopes of each curve were calculated 

and averaged to show the experimental elastic modulus obtained from the testing.  The 

values are shown in Table 4 with the theoretical values for easy comparison.  

 

Figure 8.  Stress vs. Strain Curve in the 0 Degree Fiber Orientation 
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Figure 9.  Stress vs. Strain Curve in the 22.5 Degree Fiber Orientation 

 

 

Figure 10.  Stress vs. Strain Curve in the 45 Degree Fiber Orientation 
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Figure 11.  Stress vs. Strain Curve in the 90 Degree Fiber Orientation 

 

 

Table 4.  Theoretical and Average Experimental Elastic Modulus Results 

Degrees Theoretical Experimental 
 ksi GPa ksi GPa 
0 7804 53.7 7755 53.4 

22.5 7463 51.2 6558 45.2 
45 7046 48.5 6385 44 
90 7804 53.7 7765 53.5 

 

The experimental results and the theoretical values for the Elastic modulus were 

extremely close for the 0 and 90 degree fiber orientations; however, severe differences 

were discovered between the experimental and theoretical values for the 22.5 and 45 

degree fiber orientations.  The average elastic modulus for the four zero degree tensile 

tests was 7,755 ksi with a standard deviation of 24.06. The average elastic modulus for 

the four 22.5 degree tests was 6,558 ksi with a standard deviation of 15.55. The average 



42 
 

elastic modulus for the four 45 degree tests yielded 6,385 ksi with a standard deviation of 

10.82.  The average elastic modulus for the four 90 degree tests yielded 7,765 ksi with a 

standard deviation of 18.16.  This indicates the mechanical property consistency that can 

be expected from this material.  

This difference in the off axis specimens was explained through simple geometry.  

The tensile test coupon geometry limited the number of fibers, and in this case 

completely eliminated the available fibers, which were available to handle a given load in 

tension. With a fiber orientation of 22.5 and 45 degrees, the coupon geometry does not 

allow for any of the fibers to completely transverse the length of the tensile coupon, 

which essentially eliminates the fiber’s load carrying contribution.  

When the contribution of the fibers in the mass volume fraction equations were 

removed, the experimental values more closely matched the expected elastic modulus 

values.  In GLARE-3 with a 6/5 stack, aluminum occupies a 0.5863 mass volume 

fraction.  When multiplied by the elastic modulus of aluminum (10,600 ksi), the resulting 

value of 6,240 ksi was close to the experimental data.  If the minor contributions of the 

FM-94K adhesive are included, the adhesives MVF of 0.4137 is multiplied by its 

respective elastic modulus of 377 ksi to yield a value of 156 ksi this results in a combined 

elastic modulus of 6,395 ksi, which was extremely close to the experimental results 

obtained from testing.  The geometry of the test coupon thus removed any load carrying 

contribution of the fibers; therefore the aluminum and epoxy resin were the only 

materials available to handle the load.  

In future research efforts when conducting tensile tests of fiber metal laminates, it 

is important to ensure that the test coupon geometry is created in such a manner that the 
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fibers are allowed to run from end-to-end to give the fibers a chance to handle the load 

imposed upon the coupon as a whole.  Figure 12 depicts the theoretical values and 

respective elastic modulus curve as a function of the fiber orientation for the 

experimental data.  Additionally, Figure 12 depicts the elastic moduli of 100% MVF 

2024-T3 aluminum and 58% MVF to bracket the results and illustrate the contributions 

of the fibers in the respective orientations. 

 

Figure 12.  Graph of Theoretical and Experimental Elastic Modulus Values versus Fiber 
Orientation 

 

 

As shown in Figure 12, the theoretical values obtained from the model displayed a 

flattened s-curve.  The values obtained from the experimental data appeared to be 

significantly lower than the predicted values.  This exposes a limitation associated with 

small coupon testing at the lower level of material testing.  It is believed that the GLARE 

material, in the 22.5 and 45 degree fiber orientation, would exhibit mechanical properties 
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closer to the theoretical values for a full-sized panel with a geometry such that the fibers 

would be present to transfer the load all the way through the material.  

 The experimental results of the bending can be seen in Figure 13, along with the 

theoretical bending slope.  The slopes of both the theoretical values for bending 

displacement and the experimental results are quite similar with the exception of the first 

portion at the onset of material loading.  This is due partly to the test methodology and 

the material characteristics.  The test was performed in load control with a loading rate of 

50 pounds force per minute instead of being performed in displacement control, which 

would have produced a more linear displacement curve at the origin.  The material itself, 

due to the numerous layers, should also have a certain amount of internal “wiggle room” 

in which the bending load is absorbed by the material without showing significant overall 

displacement.  Similar to a locomotive at its onset, the main engine may move 50ft before 

the caboose begins to move due to all the slack associated with each individual train car. 

The same phenomenon may have occurred with the GLARE material as the individual 

fibers needed to adjust to the loading before the whole beam began to bend as one rigid 

bar. 



45 
 

 

Figure 13.  Displacement of GLARE versus Load for 4-point bending in 0 Degree Fiber 
Orientation 

   

 Data on the requirements for a C-130 cargo floor and maximum allowable 

deflection could not be found.  Therefore, the GLARE results were compared against the 

mechanical properties of 2024 T3 aluminum, which are readily known.  Figure 14, thus 

shows the bending slopes for GLARE and 2024 T3 under identical loading conditions 

and the associated moments ranging from a 0 to 90 lb force.  The loop in the 

experimental graph was thought to be the result of a slight sticking of the rollers on the 4-

point bending apparatus as the experiment was performed.  The results seem to indicate 

that GLARE-3 in a 6/5 stack deflects less when compared to the current 0.08” aluminum 

floor for the same given load producing the same resulting bending moment.  The 

stiffness of GLARE in a 6/5 stack could possibly exceed requirements and add 

unnecessary capability and perhaps weight.  
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Figure 14.  Comparison of Maximum Bending Displacement between GLARE and 0.08" 
2024-T3 Aluminum 

 

The results of the impact properties of GLARE are perhaps the most important 

factor since cargo floors built for ruggedness and their ability to withstand the impacts 

associated with day-to-day operations.  Figure 15 depicts the results of the first series of 

impact testing in which both the GLARE-3 in a 6/5 lay-up and 0.08” 2024 T3 aluminum 

specimens were subjected to the test matrix shown in Table 3 of Chapter III.  
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Figure 15.  Impact Test Results for GLARE and 0.08" 2024-T3 Aluminum for 20J, 40J, 
60J and 80J Energy Events 

 

 

In the first series of impact tests, the velocity at impact was held constant and the 

mass was varied to obtain the desired impact energy.  The impact energies ranged from 

20 Joules to 100 Joules and testing was aborted once the tup penetrated the material. 

Obviously there was no need to perform the 20 lb mass impact test on the aluminum 

sheet since the penetration was achieved on the previous test.  For these tests the desired 

metric was the minimum energy required to cause cracking on the reverse side dimple.  

Figures 16, 17, 18, and 19 display the progression of impact energy events and the energy 

event required to cause the dimple on the reverse side of the respective materials to crack.  
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One major finding was that the minimum energy required to cause cracking on the 

reverse side dimple was 20 Joules higher for the GLARE than for the 2024 T3 aluminum.  

The other finding was that varying mass or velocity, while holding the other constant, did 

not seem to have an effect on the outcome with respect to the minimum energy required 

to cause cracking or puncturing for all velocities under 10 m/s.  Both series of impact 

tests indicate that the GLARE material performs better compared to the 0.08” aluminum 

under controlled low velocity impact testing.  The aluminum consistently punctured at 

the 60 Joule impact energy and cracked at the 40 Joule impact energy, while the GLARE 

punctured at the 80 Joule impact energy and cracked at the 60 Joule impact energy. 

 

Figure 16.  GLARE Reverse Side Dimpling and Cracking as a Function of Impact Energy 
Progression (20, 40, 60 and 80 Joules) with Constant Velocity 
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Figure 17.  0.08" 2024-T3 Aluminum Reverse Side Dimpling and Cracking as a Function 
of Impact Energy Progression (20, 40, and 60 Joules) with Constant Velocity 

 

 

Figure 18.  Reverse Side Dimpling and Cracking on GLARE as a Function of Impact 
Energy Progression (20, 40, 60, 80, and 100 Joules) with Constant Mass 
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Figure 19. Reverse Side Dimpling of 2024-T3 Aluminum as a Function of Increasing 
Impact Energy Progression (20, 40, and 60 Joules) with Constant Mass 

 

 

Engineering Analysis 

 GLARE-3 can exist in a variety of thicknesses depending on the combinations of 

thin layers of aluminum and prepreg.  In this effort, the mechanical properties of 

GLARE-3 in a 6/5 lay-up were determined both theoretically and experimentally.  

Discrepancies in the values were easily explained through the analysis of the coupon 

geometry such that the model was validated by the experimental data results.  Further 

analysis of the data showed that the mechanical properties of GLARE-3 with the 6/5 lay-

up met or exceeded the mechanical abilities of 0.08” 2024 T3 aluminum, since the 

GLARE-3 material in a 6/5 lay-up is heavier per unit volume than the 2024 T3 

aluminum, different configurations of the GLARE material were considered.  The goal 

was to determine if different lay-ups of the GLARE-3 material could be produced to 
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allow the thickness to remain equal to or less than the current 0.08 inch thick aluminum 

yet retain properties similar to the 6/5 stack.  Figures 20 and 21 show the relationship 

between the elastic modulus multiplied by the second moment of inertia (EIyy) and cross 

sectional area, respectively, for other available GLARE-3 variants.  These figures were 

based on the Euler-Bernoulli equations governing displacement in very thin plates.

 

Figure 20.  Comparison of EIyy between 2024-T3 Aluminum and Several GLARE-3 
Variants 
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Figure 21.  Comparison of EA between 2024-T3 Aluminum and Several GLARE 
Variants 

 

 

Two GLARE-3 variants, the 4/3 and 5/4 lay-ups, had the smallest vertical 

distances from the EIyy value of the current 0.08 inch thick aluminum cargo floor, 

meaning that these two lay-ups were predicted to behave most similarly to the current 

cargo floor paneling in terms of material deflection for a given force applied over the 

plate area.  Moving farther away from the EIyy of aluminum, in either direction, the 

GLARE variants would either act too stiff, or even worse, too soft when compared to the 

current aluminum floor.  Figure 21 illustrates how close each GLARE variant is relative 

to the product of its respective thickness and elastic modulus.  

Since GLARE-3 is available with 2024 T3 aluminum thicknesses of 0.3mm, 

0.4mm, and 0.5mm, respectively, further analysis was completed on each lay-up (2/1, 
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3/2, 4/3, 5/4, 6/5, and 7/6) with the three different thickness possibilities.  The analysis 

performed in Figure 20 was expanded to include all three available aluminum thicknesses 

for each respective stacking sequence.  A close up of Figure 22, shown as Figure 23 is 

also presented to better illustrate the variants closest to the 0.08” 2024 T3 Aluminum. 

 

Figure 22.  Comparison of EIyy Between 2024-T3 Aluminum and Several GLARE 
Variants for Aluminum Thicknesses of 0.3mm, 0.4mm, and 0.5mm 
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Figure 23. Close Up of Figure 22 

 

 These figures indicate that GLARE-3 in a 0.4mm 4/3 stacking sequence would 

expect to behave nearly identical to the current cargo floor in terms of its bending 

deflection as a function of imposed load.  Additionally, GLARE-3 in a 0.4mm 4/3 

stacking sequence would increase the thickness of the current cargo floor 0.1 inches, but 

would not increase the overall weight of the cargo floor as the 6/5 lay-up. Further 

analysis and testing of each of the three closest variants depicted above would be 

beneficial in the effort to determine the optimal stacking sequence and aluminum layer 

thickness for the cargo floor material application.   

Based on the results from Figures 20, 21, 22, and 23 and impact testing results, 

GLARE-3 in the 4/3 0.4mm stack would provide a close match for material thickness 
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while providing a superior impact resistant material.  This is consistent with results 

reported in the literature.  “Glass fibre reinforced Fibre Metal Laminates (GLARE FML) 

show an approximately equal or 15% better specific minimum cracking energy at low 

velocity impact (10 m/s) compared to monolithic aluminum” (Vlot & Krull, 1997, p. 

1050).  Therefore, this would indicate that a fiber metal laminate of equal or slightly less 

thickness as its aluminum counterpart would still possess approximately 15% better 

damage tolerance capabilities. 

This led to the analysis seen in figures 20, 21, 22, and 23, which show numerous 

GLARE-3 stacks ranging from a 2/1 stack to a 7/6 stack.  The independent variable used 

in each graph was the ratio of the laminate thickness to the 0.08 inch thickness of the 

current cargo floor.  The dependent variable in Figure 22 is the elastic modulus of the 

laminate multiplied by the cross sectional area of the laminate as a ratio against the 

elastic modulus of the cargo floor material multiplied by its respective cross sectional 

area.  The dependent variable in Figure 20 is the elastic modulus of the material 

multiplied by its moment of inertia compared to the elastic modulus of the aluminum 

multiplied by its respective moment of inertia.  It was observed that GLARE-3 in a 4/3 

0.4mm stack was the closest variant of GLARE 3 to the 0.08 inch aluminum point on 

both graphs without sacrificing any rigidity.  

Additionally, GLARE-3 in the 4/3 stack would have an inherent weight savings of 

approximately 15 %.  GLARE-3 in a 4/3 stack has a density of 2471 kg/cubic meter 

while 0.08” 2024 T3 aluminum has a density of 2780 kg/cubic meter.  A simple glance at 

the impact data from Vlot’s (1997) research would indicate that for low velocity impacts, 

GLARE-3 in a 4/3 stacking sequence would still maintain the “ability to withstand ~15% 
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or better specific minimum cracking energy” (Vlot & Krull, 1997, p. 1051).  This 

material in a 4/3 stacking sequence would still retain the desired impact resistance 

without adding to the overall thickness of the current material or adding any additional 

weight.  In fact, this material in a 4/3 stacking sequence would reduce the overall weight 

of the cargo floor as its density is lower than 2024 T3 aluminum.  Figure 24 depicts other 

minimum energy values required to cause cracking in various GLARE-5 thicknesses 

(inches) taken from Law, Liew, and Villars (2001).  The GLARE material tested with a 

thickness similar to the 0.08” cargo floor performed similarly to the aluminum tested in 

this research effort.  Additionally, these figures show that decreasing thickness has a 

logarithmic decrease in the minimum energy required to crack the opposite outer layer of 

aluminum.  This further illustrates the ability to use less of this material without 

sacrificing capability. 

 

Figure 24. Graph of Varying Thicknesses of GLARE-5 Showing Respective Minimum 
Cracking Energies 
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Economic Analysis: Business Case 

 To replace aluminum, a material that has performed well for over 40 years as an 

aircraft cargo floor, with a fiber metal laminate requires an advantageous business case. 

The extended inspection threshold and decreased inspection frequency associated with 

the damage tolerance and corrosion resistance properties of the material decrease the life-

cycle costs by eliminating expensive inspections, repairs, and replacements.  Figure 25 

illustrates GLARE’s ability to resist crack growth and corresponding residual strength as 

a function of crack length.  As the figure shows, GLARE has a higher residual strength 

after damage has occurred and maintains that strength much longer than monolithic 

aluminum. 

 

 

 

Figure 25.  Residual Strength of GLARE and Aluminum as a Function of Crack Length and 
Cyclic Loading (Alderliesten, 2006) 
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When compared to monolithic aluminum on mass basis, GLARE is five to ten 

times more expensive.  However, the advantageous properties of GLARE allow for less 

material to be used to achieve the same material properties as aluminum; but the weight 

savings alone does not recoup enough of the cost. (Vermeerern, 2003).  Additional 

savings are realized from reductions in maintenance and inspection hours.  As of 2004, 

the average Air Force depot maintenance labor rate with supplies neared $240 per hour 

(United States General Accounting Office (GAO), 2004).  

 The cargo floor of the C-130 occupies approximately 645.75 square feet and 0.08 

inch aluminum costs anywhere from $4 to $5 per square foot.  Using the higher value, the 

total unfinished material cost for a cargo floor would equate to about $3,228.  GLARE 

panels cost approximately $26/sq ft, which equates to $16,800 in material costs alone.  

The densities of aluminum and GLARE-3 in a 4/3 stack are shown in Table 5 along with 

the material requirements for each respective material to occupy the C-130 cargo floor. 

 

Table 5.  Density, Volume of Material Required, and Respective Weight of 2024-T3 
Aluminum and GLARE-3 in a 4/3 Lay-up 

Material Density(kg/cu m) Vol. Req’d (cu m) Weight kg(lbs) 

Aluminum 2780 0.1232 342.5(753.5) 

GLARE-3 4/3 2471 .117 289(636) 

 

 

A weight savings of 117.5 pounds (~15% reduction) could be achieved if the 

GLARE-3 in a 4/3 stack were to replace the current 0.08 inch 2024-T3 aluminum.  With 

each pound of weight shed from an aircraft, less fuel is required to power the aircraft to 
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its destination.  For every pound of weight shed from all aircraft in the AMC fleet, there 

would be an annual savings of $8,828 in fuel costs alone (McAndrews, 2009).  While this 

is not significant to justify a material replacement, additional savings result from reduced 

maintenance inspections that cost $240 per hour. 

 Evancho (2001) performed a cost analysis using 48 square feet of 0.06 inch thick 

GLARE-5 panel to replace a similar aluminum panel.  These dimensions are consistent 

with the bulk cargo floor panels in use on the Boeing 777.  He based the analysis on data 

stating that heavy-use aluminum panels experience a repair rate of one per month and 

need to be replaced annually, while GLARE panels would require replacing every five 

years with an additional repair rate of one per year.  Using commercial airline data from 

Evancho’s (2001) analysis and the Air Force depot maintenance labor rate provided from 

the GAO report, Tables 6 and 7 summarize the cost analysis.  Based on the data in Table 

6, each GLARE panel would essentially pay for itself within the first year of service.  As 

the tables show, the majority of the cost savings is associated with the reduction of labor 

and the corresponding costly labor rates.  

 

Table 6.  Cost Data on Aluminum and GLARE 

 Aluminum GLARE 

Depot Labor Rate $240/hr $240/hr 

$/panel (48sq ft) $240 $1,248 

Heavy Use Panel Life 1 year 2 years 

Heavy Use Repair Freq 1/mo 3/yr 

Hours to replace/repair floor 8/1 8/1 
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Table 7.  Maintenance Cost Estimate for Aluminum and GLARE Panel over a 30-year Period 

 Aluminum 
Aluminum 

Cost($) 
GLARE GLARE Cost($) 

Panels Replaced 30 $7,200 15 $18,720 

Labor Hours 240 $57,600 120 $28,800 

Repair Actions 360 --- 120 --- 

Repair Hours 360 $86,400 120 $28,800 

Total 30 yr cost 
per 48 sq ft 
Heavy Use 

panel 

 $151,200  $76,320 

 

One 48 square foot panel over a 30-year period would save $74,880 in current 

year dollars.  If this material were to be used for the entire 645.75 square foot cargo 

flooring, a 30-year lifetime savings of $1,007,370 in current year dollars could be 

realized per aircraft.  A sensitivity analysis was performed on the economic analysis to 

illustrate how sensitive the findings would be to slight fluctuations in any of the above 

variables.  A 10% increase and a 10% decrease in all variables associated with the life-

cycle cost was analyzed and the results are depicted along with the cost comparison in 

Figure 26.  Results of the sensitivity analysis show the figures used in this cost analysis 

are not sensitive to changes above or below 10%, thus adding a level of confidence to the 

overall results.  
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Figure 26.  Graph of Maintenance Costs for Aluminum and GLARE  

  

 

This business case analysis makes several assumptions over the 30-year length of 

the life-cycle costs.  The costs of each material remain constant over the entire life-cycle 

and do not take into consideration economies of scale for material purchase.  

Additionally, different equipment necessary to excise and prepare each material was not 

taken into account.  GLARE does require particular excision equipment that does not 

cause delamination of the material making it slightly more delicate to handle than its 

aluminum counterpart.  Lastly, the time value of money was not considered in this life-

cycle cost analysis and all figures are in current year dollars.  
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Chapter V.  Conclusion 
 

 This chapter provides a summary of the results from the experimentation, 

engineering and business case analyses, corresponding conclusions, and 

recommendations for follow on research to improve the overall understanding of the 

behavior and performance of composite materials as a secondary aircraft structure.   

Summary 

 The fiber metal laminate GLARE-3, in a 6/5 lay-up, meets or exceeds the 

mechanical material requirements for bending and impact resistance exhibited by 2024 

T3 aluminum.   Discrepancies in the modulus testing of off-axis specimens were 

explained by specimen geometry; coupon level tensile testing of off-axis dog bone 

specimens will not yield results conducive to how larger specimens of the material will 

behave.  Through further analysis, removing the contributions of the S-2 glass fibers for 

the off-axis tensile coupons yielded theoretical results that matched the testing data for 

the tensile tests. 

The theoretical model was validated by the experimental data and proven to be a 

useful tool in conjunction with the Mass Volume Fraction (MVF) technique for 

estimating the mechanical properties of GLARE.  The only discrepancies were found in 

off-axis tensile testing and those were explained through coupon geometry limitations 

and MVF proved useful in that analysis.  Additionally, it was noted that testing this 

material above the coupon level should alleviate the geometry constraints for tensile 

testing specimens and the experimental values should match the theoretical values.  The 

model accurately predicted the expected bending profile of the GLARE material which 

provided accurate results to use for comparison against monolithic aluminum to 
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determine that GLARE in a 6/5 configuration met the maximum deflection and bending 

requirements.  

Conclusions 

 The process of taking a known user problem and mating it with a feasible material 

solution successfully identified a feasible material, a fiber metal laminate, which satisfied 

the requirements of being both mechanically and economically viable for use as a 

replacement material.  The experiments accurately captured the required data for 

determining the material’s elastic modulus, bending profile, and impact resistance.  These 

specific mechanical properties were found to be the main properties of interest as cargo 

flooring is primarily designed to carry loads and be rugged enough to resist impact 

damage from daily use. 

This particular variant of GLARE-3 in a 6/5 lay-up, because it is 0.045 inches 

thicker than 0.08 inch aluminum and slightly heavier than the current cargo floor 

material, is not considered a true form, fit, function replacement material.  However, the 

engineering analysis performed in this research effort showed that other GLARE-3 

variants could meet the physical requirements while maintaining the mechanical 

properties necessary to meet the requirements of a cargo floor.  The two variants with the 

most potential would be GLARE-3 in a 4/3 0.4mm and 3/2 0.5mm lay-up. 

GLARE-3 in a 4/3 lay-up is 0.077 inches thick and weighs less than the current 

cargo floor.  The bending and impact properties should be similar to the properties of the 

6/5 lay-up.  As noted earlier, the change in the material’s impact resistance from a 6/5 

lay-up to a 4/3 lay-up would be minimal; however, this property would need to be 

investigated further to determine exactly how much the impact resistance might change.  
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The GLARE-3 material was proven, by answering the research questions, to be a good 

potential candidate for further testing of the different material configurations.  

 The mechanical advantages of using GLARE, compared to monolithic aluminum, 

were its higher impact resistance, greater ability to resist bending, and greater residual 

strength.  Based on the assumptions made in the business case, GLARE provides a source 

for O&M savings in that the added upfront costs associated with use of the material as a 

replacement for aluminum would pay for itself within the first year of its life by reducing 

the repair frequency and repair costs associated with the use of 2024 T3 aluminum.  

Sensitivity results provided a certain confidence to the life-cycle costs and showed that 

the material would provide almost immediate O&M savings under the stated 

assumptions.  Finally, O&M costs from structural repair and replacement have been 

continually increasing each year due to accelerated aging of the U.S. Air Force’s fleet 

from sustained high operations tempos in Iraq and Afghanistan; this material provides a 

feasible opportunity to combat those rising costs.    

The residual strength of the material further extends its service life by requiring 

less repair and maintenance than monolithic aluminum meaning the material could 

continue to perform as effective cargo flooring after being damaged while the current 

aluminum flooring would require repair or replacement.  The impact testing revealed that 

GLARE in a 6/5 stack is more damage-tolerant than 2024 T3 aluminum; in fact on 

average it is able to absorb an additional 20 Joules of impact energy before reverse side 

cracking occurs for low velocity impacts.  Analysis reported in the literature also noted 

than once GLARE is damaged its residual strength is higher than aluminum.  This ability 
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allows for lengthening the replacement intervals and repair intervals, which significantly 

was found to be one of the main factors included the business case. 

Concluding Remarks 

This research effort makes a positive case for the use of GLARE for use on a 

military cargo aircraft as its cargo floor.  The optimal solution of material thickness, fiber 

orientation, and stacking sequence, however, was not investigated in this effort.  A 

follow-on research effort might include testing of the GLARE-3 or GLARE-5 material in 

a 4/3 or 5/4 stacking sequence in the various thickness available and then test larger 

specimens to obtain a greater understanding of performance, specifically in terms of 

tension and bending. 

A greater understanding of the impact properties of GLARE would also be useful 

for presenting this material as a feasible candidate to replace aluminum.  The impact 

testing in this effort consisted of only testing one impactor size and shape while 

numerous other sizes and shapes exist.  A full impact testing profile consisting of low 

velocity and high velocity impacts with impactors of various sizes and shapes would 

create a much fuller understanding of the impact behavior of this material.  Smaller 

diameter spherical impactors, for example, would be able to demonstrate the material’s 

ability to withstand piercing impacts.  A full impact property profile would help further 

champion this material as a feasible replacement for monolithic aluminum.  

In addition to understanding the mechanical properties of each variant further 

research is needed to strengthen the business case for this material.  Data relating to the 

repair frequency and replacement intervals would provide greater assurance in the values 

presented in this business case.  One possibility should include installing a single GLARE 
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panel onboard a C-130 aircraft and allowing the material to perform for a set duration of 

time, followed by removal and further analysis against its aluminum counterpart.  This 

actual data would further refine the assumptions included in presenting a case of making 

this material a feasible replacement material. 

With a full cargo panel specimen, the geometry issues associated with the fibers 

not traveling the length of the specimen would not arise.  Follow-on efforts might also 

include testing different GLARE variants such as GLARE-5 which is built in a similar 

stacking sequence as GLARE-3 with the addition of a 45 degree fiber orientation prepreg 

layer with each 0 and 90 degree layer.  While the 15% weight savings was minimal on 

the C-130, a possible follow-on research effort could examine the possibility of using a 

Fiber Metal Laminate on a C-17 or C-5 aircraft where the square footage of each cargo 

compartment is much larger than the C-130, thus the potential for weight savings would 

be greater.   

Additional follow-on research could investigate the feasibility of using a GLARE 

variant for other secondary or primary structural applications.  In fact, several instances 

of fleet-wide groundings due to aircraft structure fatigue have been witnessed due to the 

demands of recent wartime operations.  Numerous fatigue issues are currently plaguing 

the aging military cargo aircraft community therefore, each instance could provide an 

opportunity where a third generation aircraft structural material could be used to replace a 

second generation aircraft structure. 
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